Circularly Polarized Cubical Quads

The great majority of FM broadcast signals in the U.S. are circularly polarized. You can take advantage of them with an end-fire array of square loops. Parasitic loops respond to circular fields without modification. The addition of a diagonal conductor to a split driven loop promotes a circular response. Power recovered from the orthogonal field increases forward gain and helps cancel rear signals. The antennas also respond to horizontal and vertical linear fields, used mostly by translator and booster stations. I designed the antennas for right-circular polarization, which seems far more common than left-circular. They will attenuate right-circular signals that become left-circular upon reflection, which can reduce multipath interference. Flip the driven loop in the horizontal plane to reverse the circularity sense.

Free-space models are inadequate for circularly polarized designs because antenna height and ground quality affect circularity. To represent a typical installation, I optimized all designs at a boom height of 20 feet over ground with dielectric constant 13, conductivity 5 mS/m. This is average ground at 1 MHz, but it is something else at 98 MHz.

Calculated performance is for a perfectly circular transmit signal with a single ground reflection. But transmit antennas may exhibit an axial ratio of several dB, especially when the tower structure is not properly accounted for. In addition, scattering may occur multiple times during propagation over irregular terrain. Each instance differentially alters the orthogonal fields, which degrades circularity. Finally, antenna height and ground characteristics may differ from those modeled. Because of these factors, rear rejection may be substantially lower than calculated for many signals. Although it is less sensitive, forward gain also may decline. Axial ratio measurements in irregular terrain showed wide variation among broadcast signals.

Given the likely axial ratio variability, I used the AO 9.61 Antenna Optimizer to maximize forward gain without regard for the pattern. The two- and four-element designs provide high gain in small spaces. These compact antennas have turning radii of just 25″ and 32″. The larger antennas provide even more gain. None of the designs has decent rear-signal rejection over the entire band unless the signal is right-circular with favorable axial ratio.

Calculated performance is for 17 analysis segments per conductor halfwave with bent-wire correction. The gain reference is a circularly polarized isotropic antenna in free space. All results are at 1° elevation angle.

Two Elements

Blue dots mark analysis segments. The red dot is the 300Ω feedpoint. The boom length is 25″.

Modeling Results

Forward gain includes mismatch and conductor losses. Axial ratio is the ratio of maximum to minimum linearly polarized forward power. H/V is the ratio of horizontal to vertical forward power. F/R is the ratio of forward power to that of the worst backlobe in the rear half-plane.

Frequency  Impedance    SWR   Mismatch  Conductor  Forward    Axial       H/V       F/R 
   MHz       ohms              Loss dB   Loss dB  Gain dBic  Ratio dB      dB        dB 
    88      318+j141    1.58     0.23      0.06     -1.72      7.98       0.13     12.07
    89      424+j116    1.60     0.24      0.05     -1.41      6.68      -0.95     11.38
    90      476+j45     1.61     0.25      0.04     -1.30      5.43      -1.55     11.03
    91      479-j15     1.60     0.24      0.04     -1.27      4.36      -1.74     10.91
    92      463-j50     1.57     0.22      0.03     -1.30      3.52      -1.68     10.96
    93      445-j68     1.54     0.20      0.03     -1.34      2.90      -1.53     11.10
    94      428-j78     1.52     0.19      0.03     -1.38      2.52      -1.44     11.31
    95      414-j80     1.48     0.17      0.02     -1.41      2.19      -1.30     11.56
    96      402-j80     1.45     0.15      0.02     -1.42      1.96      -1.25     11.86
    97      391-j78     1.42     0.13      0.02     -1.42      1.80      -1.25     12.20
    98      380-j74     1.38     0.11      0.02     -1.41      1.70      -1.30     12.48
    99      370-j68     1.34     0.09      0.02     -1.39      1.64      -1.40     12.03
   100      359-j62     1.30     0.07      0.02     -1.35      1.64      -1.52     11.61
   101      349-j54     1.25     0.05      0.02     -1.31      1.69      -1.66     11.19
   102      340-j46     1.21     0.04      0.02     -1.28      1.84      -1.84     10.77
   103      329-j34     1.15     0.02      0.02     -1.24      2.01      -1.96     10.39
   104      318-j21     1.09     0.01      0.02     -1.22      2.23      -2.04     10.01
   105      307-j5      1.03     0.00      0.03     -1.20      2.51      -2.08      9.66
   106      297+j13     1.04     0.00      0.03     -1.19      2.83      -2.08      9.32
   107      288+j34     1.13     0.02      0.03     -1.21      3.18      -2.01      8.98
   108      280+j57     1.23     0.05      0.03     -1.25      3.56      -1.90      8.65

These patterns show the response to interfering signals with worst-case polarization.

Antenna File

2-el CP Quad
20' High
88 93 98 103 108 MHz
9 copper wires, inches
ang = -11.58096			; skew compensation
a = 12.12322			; driven element lower wire
b = 21.4524			; driven element half-side
c = 16.14408			; driven element diagonal wire
r = 17.62746			; reflector half-side
s = 24.92588			; loop spacing
q = .5 * s			; driven element position
p = -q				; reflector position
shift z 20'
rotate z ang
1  p -r -r  p  r -r  #14	; reflector
1  p  r -r  p  r  r  #14
1  p  r  r  p -r  r  #14
1  p -r  r  p -r -r  #14
1  q -a -b  q  b -b  #14	; driven element
1  q  b -b  q  b  b  #14
1  q  b  b  q -b  b  #14
1  q -b  b  q -b -b  #14
1  q -b -b  q  c  c  #14
1 source
Wire 5, end2

Construction

Use #14 bare copper wire supported by nonconductive X-shaped spreaders. The driven loop is 42⅞″ on three sides. The bottom wire is 33916″ long. The diagonal wire slanted 45° is 53316″ long. The reflector loop is 35¼″ on each side and spaced 241516″ from the driven loop. Use a compact, low-loss L-network balun. To decouple the feedline, install current chokes at 30″ intervals. The last one should be several feet from the antenna. For best performance the mast section near the antenna should be nonconductive.

The construction method described below for the five-element design will work. But to reduce visibility in a residential setting, use thin, tapered fiberglass spreaders mounted on a small-diameter boom, both with muted color. You can eliminate the boom by using sloping spreaders and a custom central hub.

The model includes an azimuth rotation to compensate for pattern skew. When aligning a rotor indicator or installing the antenna in a fixed direction, point the boom 12° to the left of the intended bearing.

Sensitivity Analysis

The following table shows the largest performance degradation over 88, 93, 98, 103, and 108 MHz in dB when altering a symbol value by Tol.

Symbol      Tol   Gain    F/R
   ang   1.0000   0.04   0.29
     a   0.0394   0.00   0.00
     b   0.0197   0.04   0.11
     c   0.0394   0.02   0.04
     r   0.0197   0.04   0.00
     s   0.0394   0.00   0.00

Four Elements

This design uses four elements on three spreaders. The additional reflector loop improves forward gain 0.4 dB over much of the band. The boom length is 51″.

Modeling Results

Forward gain includes mismatch and conductor losses. Axial ratio is the ratio of maximum to minimum linearly polarized forward power. H/V is the ratio of horizontal to vertical forward power. F/R is the ratio of forward power to that of the worst backlobe in the rear half-plane.

Frequency  Impedance    SWR   Mismatch  Conductor  Forward    Axial       H/V       F/R 
   MHz       ohms              Loss dB   Loss dB  Gain dBic  Ratio dB      dB        dB 
    88      243-j13     1.24     0.05      0.05     -1.09      7.96       1.85     16.86
    89      290-j1      1.03     0.00      0.04     -0.79      6.73       1.30     16.57
    90      324-j3      1.08     0.01      0.03     -0.68      5.77       1.02     16.13
    91      346-j9      1.16     0.02      0.03     -0.63      5.07       0.90     15.96
    92      359-j15     1.20     0.04      0.03     -0.60      4.58       0.86     15.84
    93      366-j17     1.23     0.05      0.03     -0.57      4.23       0.80     15.35
    94      371-j18     1.25     0.05      0.02     -0.53      4.00       0.69     14.99
    95      374-j17     1.25     0.06      0.02     -0.47      3.79       0.57     14.66
    96      376-j13     1.26     0.06      0.02     -0.40      3.60       0.38     14.38
    97      379-j9      1.27     0.06      0.02     -0.32      3.41       0.13     14.14
    98      382-j5      1.27     0.06      0.02     -0.22      3.20      -0.19     13.94
    99      385-j1      1.28     0.07      0.03     -0.12      3.02      -0.52     13.80
   100      389+j1      1.30     0.07      0.03      0.00      2.82      -0.96     13.70
   101      393+j0      1.31     0.08      0.03      0.12      2.65      -1.44     13.65
   102      394-j4      1.31     0.08      0.03      0.25      2.59      -1.96     13.66
   103      389-j11     1.30     0.07      0.03      0.37      2.69      -2.50     13.73
   104      377-j20     1.26     0.06      0.03      0.49      3.02      -3.02     13.86
   105      353-j24     1.20     0.04      0.04      0.57      3.61      -3.47     14.02
   106      321-j19     1.10     0.01      0.04      0.59      4.48      -3.75     14.16
   107      283-j0      1.06     0.00      0.05      0.49      5.63      -3.75     14.17
   108      249+j35     1.26     0.06      0.05      0.19      7.04      -3.37     13.13

These patterns show the response to interfering signals with worst-case polarization.

Antenna File

4-el CP Quad
20' High
88 93 98 103 108 MHz
17 copper wires, inches
r = 17.68269		; inner reflector half-side
s = 20.01408		; outer reflector half-side
a = 14.82155		; driven element lower wire
b = 19.63566		; driven element half-side
c = 21.63432		; driven element diagonal wire
d1 = 13.58508		; director half-side
dep = 26.51343		; driven element position
dex = dep + 1		; diagonal wire tip position
d1p = 50.84081		; director position
shift z 20'
1    0  -r  -r    0   r  -r  #14	; inner reflector
1    0   r  -r    0   r   r  #14
1    0   r   r    0  -r   r  #14
1    0  -r   r    0  -r  -r  #14
1    0  -s  -s    0   s  -s  #14	; outer reflector
1    0   s  -s    0   s   s  #14
1    0   s   s    0  -s   s  #14
1    0  -s   s    0  -s  -s  #14
1  dep  -a  -b  dep   b  -b  #14	; driven element
1  dep   b  -b  dep   b   b  #14
1  dep   b   b  dep  -b   b  #14
1  dep  -b   b  dep  -b  -b  #14
1  dep  -b  -b  dex   c   c  #14
1  d1p -d1 -d1  d1p  d1 -d1  #14	; director
1  d1p  d1 -d1  d1p  d1  d1  #14
1  d1p  d1  d1  d1p -d1  d1  #14
1  d1p -d1  d1  d1p -d1 -d1  #14
1 source
Wire 9, end2

Construction

Construct like the five-element design described below. The length of the driven element lower wire is 34716″. The length of the diagonal wire is 58⅜″.

If necessary, span the reflector wires with thin polystyrene rods to stabilize the spacing. A simple attachment method is to heat the wires and melt them into the plastic.

Sensitivity Analysis

The following table shows the largest performance degradation over 88, 93, 98, 103, and 108 MHz in dB when altering a symbol value by Tol.

Symbol      Tol   Gain    F/R
     r   0.0197   0.01   0.12
     s   0.0197   0.00   0.01
     a   0.0394   0.00   0.00
     b   0.0197   0.03   0.08
     c   0.0394   0.00   0.02
    d1   0.0197   0.04   0.19
   dep   0.0394   0.00   0.02
   d1p   0.0394   0.00   0.01

Five Elements

This design uses five elements on a 115″ boom.

Modeling Results

Forward gain includes mismatch and conductor losses. Axial ratio is the ratio of maximum to minimum linearly polarized forward power. H/V is the ratio of horizontal to vertical forward power. F/R is the ratio of forward power to that of the worst backlobe in the rear half-plane.

Frequency  Impedance    SWR   Mismatch  Conductor  Forward    Axial       H/V       F/R 
   MHz       ohms              Loss dB   Loss dB  Gain dBic  Ratio dB      dB        dB 
    88      292+j41     1.15     0.02      0.05     -0.04      7.11       0.39     17.61
    89      344+j31     1.18     0.03      0.04      0.22      5.81      -0.09     16.65
    90      372+j9      1.24     0.05      0.04      0.33      4.75      -0.21     16.17
    91      384-j8      1.28     0.07      0.03      0.39      3.99      -0.22     15.98
    92      387-j18     1.30     0.07      0.03      0.44      3.50      -0.11     15.96
    93      387-j23     1.30     0.08      0.03      0.50      3.18      -0.04     15.41
    94      388-j25     1.31     0.08      0.03      0.58      2.99      -0.12     14.98
    95      388-j24     1.31     0.08      0.03      0.70      2.80      -0.23     14.58
    96      389-j23     1.31     0.08      0.03      0.84      2.61      -0.44     14.21
    97      390-j23     1.31     0.08      0.03      1.00      2.42      -0.73     13.87
    98      390-j25     1.31     0.08      0.03      1.17      2.22      -1.08     13.54
    99      388-j29     1.31     0.08      0.03      1.36      2.09      -1.47     13.24
   100      380-j34     1.29     0.07      0.03      1.55      2.02      -1.84     12.95
   101      364-j37     1.25     0.05      0.04      1.73      2.11      -2.11     12.68
   102      342-j33     1.18     0.03      0.04      1.90      2.40      -2.20     12.46
   103      319-j20     1.09     0.01      0.04      2.03      2.82      -2.00     12.29
   104      299+j2      1.01     0.00      0.05      2.14      3.28      -1.49     12.24
   105      287+j27     1.11     0.01      0.06      2.29      3.54      -0.74     12.40
   106      281+j49     1.20     0.04      0.07      2.63      3.21       0.02     12.91
   107      269+j66     1.29     0.07      0.12      3.36      1.61      -0.38     13.77
   108      255+j21     1.20     0.04      0.27      3.35      6.41      -6.15     14.82

These patterns show the response to interfering signals with worst-case polarization.

Antenna File

5-el CP Quad
20' High
88 90 98 106 108 MHz
21 copper wires, inches
r = 17.71214		; reflector half-side
a = 14.49214		; driven element lower wire
b = 20.20037		; driven element half-side
c = 21.99771		; driven element diagonal wire
d1 = 13.7816		; director half-sides
d2 = 13.88908
d3 = 14.00479
dep = 27.06915		; driven element position
dex = dep + 1		; diagonal wire tip position
d1p = 51.54301		; director positions
d2p = 82.69584
d3p = 114.5893
shift z 20'
1    0  -r  -r    0   r  -r  #14	; reflector
1    0   r  -r    0   r   r  #14
1    0   r   r    0  -r   r  #14
1    0  -r   r    0  -r  -r  #14
1  dep  -a  -b  dep   b  -b  #14	; driven element
1  dep   b  -b  dep   b   b  #14
1  dep   b   b  dep  -b   b  #14
1  dep  -b   b  dep  -b  -b  #14
1  dep  -b  -b  dex   c   c  #14
1  d1p -d1 -d1  d1p  d1 -d1  #14	; director 1
1  d1p  d1 -d1  d1p  d1  d1  #14
1  d1p  d1  d1  d1p -d1  d1  #14
1  d1p -d1  d1  d1p -d1 -d1  #14
1  d2p -d2 -d2  d2p  d2 -d2  #14	; director 2
1  d2p  d2 -d2  d2p  d2  d2  #14
1  d2p  d2  d2  d2p -d2  d2  #14
1  d2p -d2  d2  d2p -d2 -d2  #14
1  d3p -d3 -d3  d3p  d3 -d3  #14	; director 3
1  d3p  d3 -d3  d3p  d3  d3  #14
1  d3p  d3  d3  d3p -d3  d3  #14
1  d3p -d3  d3  d3p -d3 -d3  #14
1 source
Wire 5, end2

Construction

Use #14 bare copper wire supported by ½″ PVC pipe (0.84″ OD). The length of the driven element lower wire is 341116″. The length of the diagonal wire is 591116″. It extends a couple inches past the corner so place them on opposite sides of the spreader. Use a 10-foot piece of 1½″ ABS pipe (1.9″ OD) for the boom. Use nonconductive upper and lower boom guys. In windy areas, add side guys. Mount the spreaders with PVC conduit clamps. Secure the clamps with a sheet metal screw. Use a compact, low-loss L-network balun. To decouple the feedline, install current chokes at 30″ intervals. The last one should be several feet from the antenna. The mast section near the antenna should be nonconductive. Read these notes before building anything.

Sensitivity Analysis

The following table shows the largest performance degradation over 88, 93, 98, 103, and 108 MHz in dB when altering a symbol value by Tol.

Symbol      Tol   Gain    F/R
     r   0.0197   0.02   0.12
     a   0.0394   0.00   0.00
     b   0.0197   0.04   0.07
     c   0.0394   0.02   0.02
    d1   0.0197   0.23   0.43
    d2   0.0197   0.31   0.40
    d3   0.0197   0.23   0.58
   dep   0.0394   0.01   0.02
   d1p   0.0394   0.01   0.01
   d2p   0.0394   0.01   0.01
   d3p   0.0394   0.01   0.02

Seven Elements

This design uses seven elements on a 186″ boom.

Modeling Results

Forward gain includes mismatch and conductor losses. Axial ratio is the ratio of maximum to minimum linearly polarized forward power. H/V is the ratio of horizontal to vertical forward power. F/R is the ratio of forward power to that of the worst backlobe in the rear half-plane.

Frequency  Impedance    SWR   Mismatch  Conductor  Forward    Axial       H/V       F/R 
   MHz       ohms              Loss dB   Loss dB  Gain dBic  Ratio dB      dB        dB 
    88      293+j35     1.13     0.02      0.05      0.60      7.03       0.37     18.96
    89      342+j30     1.17     0.03      0.04      0.91      5.90      -0.11     18.59
    90      372+j12     1.24     0.05      0.04      1.07      4.97      -0.31     18.25
    91      385-j3      1.28     0.07      0.03      1.18      4.27      -0.37     18.21
    92      391-j14     1.31     0.08      0.03      1.27      3.75      -0.39     17.72
    93      395-j20     1.32     0.09      0.03      1.37      3.36      -0.43     17.32
    94      398-j25     1.34     0.09      0.03      1.49      3.07      -0.59     17.09
    95      400-j29     1.35     0.10      0.03      1.63      2.75      -0.73     16.92
    96      400-j33     1.35     0.10      0.03      1.79      2.41      -0.90     16.82
    97      397-j39     1.35     0.10      0.03      1.97      2.05      -1.07     16.77
    98      389-j45     1.34     0.09      0.03      2.16      1.69      -1.19     16.74
    99      377-j49     1.31     0.08      0.03      2.37      1.38      -1.24     16.71
   100      361-j47     1.26     0.06      0.04      2.59      1.15      -1.15     16.66
   101      343-j39     1.20     0.04      0.04      2.83      1.05      -0.92     16.51
   102      326-j27     1.13     0.02      0.04      3.11      1.04      -0.64     16.20
   103      312-j10     1.05     0.00      0.05      3.47      0.99      -0.44     15.92
   104      300+j8      1.03     0.00      0.06      3.93      0.91      -0.58     15.64
   105      295+j25     1.09     0.01      0.08      4.50      1.55      -1.46     15.23
   106      283+j25     1.11     0.01      0.12      4.93      3.48      -3.14     14.44
   107      232+j48     1.37     0.11      0.17      4.60      5.62      -3.37     13.06
   108      244+j70     1.39     0.12      0.38      4.10      3.66      -2.89     12.51

These patterns show the response to interfering signals with worst-case polarization.

Antenna File

7-el CP Quad
20' High
88 89 90 98 106 107 108 MHz
29 copper wires, inches
r = 17.68041		; reflector half-side
a = 14.47533		; driven element lower wier
b = 20.19889		; driven element half-side
c = 22.44163		; driven element diagonal wire
d1 = 13.8335		; director half-sides
d2 = 14.07744
d3 = 13.784
d4 = 13.74143
d5 = 13.91304
dep = 29.19122		; driven element position
dex = dep + 1		; diagonal wire tip position
d1p = 50.496		; director positions
d2p = 78.3315
d3p = 116.5934
d4p = 151.7725
d5p = 186.4434
shift z 20'
1    0  -r  -r    0   r  -r  #14	; reflector
1    0   r  -r    0   r   r  #14
1    0   r   r    0  -r   r  #14
1    0  -r   r    0  -r  -r  #14
1  dep  -a  -b  dep   b  -b  #14	; driven element
1  dep   b  -b  dep   b   b  #14
1  dep   b   b  dep  -b   b  #14
1  dep  -b   b  dep  -b  -b  #14
1  dep  -b  -b  dex   c   c  #14
1  d1p -d1 -d1  d1p  d1 -d1  #14	; director 1
1  d1p  d1 -d1  d1p  d1  d1  #14
1  d1p  d1  d1  d1p -d1  d1  #14
1  d1p -d1  d1  d1p -d1 -d1  #14
1  d2p -d2 -d2  d2p  d2 -d2  #14	; director 2
1  d2p  d2 -d2  d2p  d2  d2  #14
1  d2p  d2  d2  d2p -d2  d2  #14
1  d2p -d2  d2  d2p -d2 -d2  #14
1  d3p -d3 -d3  d3p  d3 -d3  #14	; director 3
1  d3p  d3 -d3  d3p  d3  d3  #14
1  d3p  d3  d3  d3p -d3  d3  #14
1  d3p -d3  d3  d3p -d3 -d3  #14
1  d4p -d4 -d4  d4p  d4 -d4  #14	; director 4
1  d4p  d4 -d4  d4p  d4  d4  #14
1  d4p  d4  d4  d4p -d4  d4  #14
1  d4p -d4  d4  d4p -d4 -d4  #14
1  d5p -d5 -d5  d5p  d5 -d5  #14	; director 5
1  d5p  d5 -d5  d5p  d5  d5  #14
1  d5p  d5  d5  d5p -d5  d5  #14
1  d5p -d5  d5  d5p -d5 -d5  #14
1 source
Wire 5, end2

Construction

Use elements and spreaders as described for the five-element design. A spliced ABS boom might work if fully guyed, but an aluminum boom would be better. The length of the driven element lower wire is 341116″. The length of the diagonal wire is 60516″.

Sensitivity Analysis

The following table shows the largest performance degradation over 88, 93, 98, 103, and 108 MHz in dB when altering a symbol value by Tol.

Symbol      Tol   Gain    F/R
     r   0.0197   0.04   0.15
     a   0.0394   0.00   0.01
     b   0.0197   0.04   0.03
     c   0.0394   0.03   0.03
    d1   0.0197   0.24   0.03
    d2   0.0197   0.37   0.42
    d3   0.0197   0.24   0.09
    d4   0.0197   0.14   0.23
    d5   0.0197   0.04   0.03
   dep   0.0394   0.00   0.00
   d1p   0.0394   0.00   0.00
   d2p   0.0394   0.00   0.00
   d3p   0.0394   0.00   0.01
   d4p   0.0394   0.01   0.01
   d5p   0.0394   0.00   0.00

Gain Comparison

This compares the quads, circularly polarized crossed Yagis, Antennacraft FM6, small 5-element Yagi, Antenna Performance Specialties APS-13, 10-element Home Depot Yagi, and Körner 9.2, 15.12, and 19.3 for a right-circular field with the booms 20 feet above 13/5 ground. Boom length precedes the antenna name.

Quads vs Crossed Yagis

Transmit Polarization

C  Circular           Hpwr = Vpwr
H  Horizontal         Vpwr = 0
V  Vertical           Hpwr = 0
h  Mostly horizontal  Hpwr > Vpwr > 0
v  Mostly vertical    Vpwr > Hpwr > 0

Class         Percent    C   H   V   h   v
All               100   85   4   9   1   1
Full service       51   91   2   4   2   1
Translator         37   76   7  17   0   0
LPFM               10   98   1   1   0   0
Booster             2   57   8  30   1   3

This table lists antenna polarization by service class for U.S. FM broadcast stations as of December 2020.

If you build a right-circular antenna and a favorite station is left-circular, you'll be disappointed. To prevent this, look up important stations in the FCC database. Check the horizontal and vertical transmit power to determine polarization. To determine circularity sense, check the specifications for the antenna make and model at the manufacturer's website. Some manufacturers do not list circularity sense. As best I can tell, current antenna models from the following are right-circular: ERI, Jampro, Micronetixx, PSI nonpanel, SWR nonpanel except the FM1, Progressive Concepts except the CIRPA, Nicom except the BKG 88, and Shively Labs except the 6832, 6842, and Versa2une. Exceptions are left-circular. Some interleaved Dielectric antennas are right-circular for analog and left-circular for HD Radio. Harris FMH and Bext antennas are left-circular.

If you're unable to identify a station's antenna, try to find an image of its tower, perhaps with Google Street View.

These antennas are right-circular.

These antennas are left-circular.

If you can receive a station with a tilted dipole, you can determine its circularity sense by finding whether a left or right tilt maximizes signal strength. When all else fails, contact the station chief engineer.


April 10, 202488–108 MHz